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1. Introduction

Frequency hopping and adaptive arrays are two of the most powerful methods of rejecting

interference. However, the multitude of standard adaptive algorithms are not entirely

compatible with frequency hopping, and more specialized algorithms are required. An early

attempt to use the classical least-mean-squares (LMS) algorithm (1 ) placed restrictions on

the hopping and did not exploit the specific characteristics of the frequency-hopping

waveform. The two blind adaptive-array algorithms that do exploit the characteristics are

the maximin algorithm (2 ), (3 ) and the constant power algorithm (4 ). Since it exploits the

constant power of the frequency-hopping waveform, the constant power algorithm is

inherently suitable only over the flat-fading channel and against strong interference signals

that fluctuate significantly from hop-to-hop.

The maximin algorithm discriminates between the desired signal and interference on the

basis of the distinct spectral characteristics of spread-spectrum signals. As indicated by its

name, the maximin algorithm simultaneously maximizes the desired-signal component and

minimizes the interference component in the despread signal. An adaptive array using the

maximin algorithm provides a frequency-hopping system with a high degree of protection

against strong directional interference that occupies a large part of the hopping band.

Major advantages of the maximin algorithm are that it does not require training sequences,

directional information, or decision-directed adaptation.

The anticipative maximin algorithm is a blind adaptive-array algorithm that exploits both

the spectral and temporal characteristics of frequency-hopping signals. The anticipative

maximin algorithm fuses a new form of anticipative processing with an improved version of

the maximin algorithm to enable the cancellation of partial-band interference within a

hopping band. Anticipative processing was originally proposed to compensate for the

impairments of very wide hopping bands (5 ). The improvements of the maximin algorithm

include a new adaptation sequence, the introduction of a memory factor, and a

simplification of the baseband signal processing.

The next section introduces the notation and provides a derivation of the improved

maximin algorithm. In section 3, the details of the implementation of the maximin

processor in a frequency-hopping system are explained. The convergence analysis of

appendix B establishes bounds on the adaptation constant and justifies the adaptation

sequence used in the maximin algorithm. The full anticipative maximin algorithm and its

implementation are explained in section 4. The results of many representative simulation

experiments are presented in section 5. Frequency compensation techniques for wideband

frequency hopping are described in section 6.
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2. Derivation of Maximin Algorithm

The basic configuration of an adaptive array for frequency-hopping systems is displayed in

figure 1. The unmodulated frequency-hopping replica, which is produced by a synchronized

receiver (6 ), enables the dehopping or removal of the time-varying carrier frequency of each

copy of the received frequency-hopping signal. The sample values of the complex envelopes

of the dehopped signals are extracted by initial processors and applied to an adaptive

processor that executes the maximin algorithm. The desired signal and the interference are

assumed to arrive at an adaptive array of N antennas. The desired signal, interference

signals, and thermal noise are modeled as independent zero-mean, wide-sense-stationary

stochastic processes. Let x(i) denote the discrete-time vector of the complex envelopes of

the N antenna outputs after each one has been sampled, despread, and filtered. The index

i denotes the sample number. The vector x(i) can be decomposed as

x(i) = s(i) + n(i) (1)

where s(i) is the vector of desired-signal complex envelopes, and n(i) is the vector of

interference and thermal-noise complex envelopes. The adaptive filter generates a weight

vector w with complex-valued components. The output of the adaptive filter is

y(i) = wHx(i) = ys(i) + yn(i) (2)

Antenna 1 Antenna N

To demodulator

Adaptive

processor

Initial

processor

FH

replicaInitial

processor

FH

replica

Figure 1. Configuration of adaptive array for frequency-hopping system.
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where MH denotes the complex-conjugate transpose of M and

ys(i) = w
Hs(i), yn(i) = w

Hn(i). (3)

Let E[ ] denote the expected value. When w is a constant, the desired-signal output power

is

ps = E[|ys(i)|2] = wHRsw (4)

where Rs is the desired-signal correlation matrix:

Rs = E[s(i)s
H(i)]. (5)

The interference-plus-noise output power is

pn = w
HRnw (6)

where Rn is the interference-plus-noise correlation matrix:

Rn = E[n(i)n
H(i)]. (7)

The signal-to-interference-plus-noise ratio (SINR) is

ρ =
ps
pn
=
wHRsw

wHRnw
. (8)

The SINR provides the performance measure that the adaptive algorithm seeks to

maximize. The optimal weight vector derived from the maximization of the SINR

(appendix B) is no different from the optimal weight vector under other optimization

criteria such as the minimum-variance distortionless-response criterion (7 ), (8), (9 ).

However, the adaptive algorithm obtained from the SINR optimization criterion differs

from the algorithms derived under other criteria in that the recursive equation is a highly

nonlinear function of the weight vector.

The weight vector may be decomposed as w = wr + jwi, where wr and wi are the real and

imaginary parts of w, respectively, and j =
√−1. Let ∇wr and ∇wi denote the gradients

with respect to wr and wi, respectively. The complex gradient is defined as

∇w =
1

2
(∇wr + j∇wi) . (9)

The maximin algorithm is based on the method of steepest descent (7 ), (8), (9 ). In this

method, the weight vector is changed along the direction of the negative gradient of a
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performance measure that is to be minimized. Separate steepest-descent equations can be

written for wr and wi with the negative SINR serving as the performance measure.

Combining these equations yields

w(k + 1) = w(k) + μ0(k)∇wρ(k) (10)

where k denotes the weight iteration number, μ0(k) is a scalar sequence that controls the

rate of change of the weight vector, and ∇wρ(k) is the gradient of the SINR at iteration k.
Applying equation 8 to 9 and evaluating, we obtain

∇wρ = ρ

∙
Rsw

ps
− Rnw

pn

¸
. (11)

Since the interference and noise are zero-mean and statistically independent of the desired

signal, the input correlation matrix is

Rx = E[x(i)x
H(i)] = Rs +Rn (12)

and the adaptive-filter output power is

px = E[|y(i)|2] = wHRxw =ps + pn. (13)

Substitution of equation 12 and 13 into 11 and simplification yields

∇wρ = (ρ+ 1)
∙
Rxw

px
− Rnw

pn

¸
. (14)

Substitution of this equation into equation 10 and the replacement of w with w(k) gives

the steepest-descent algorithm:

w(k + 1) = w(k) + μ0(k)[ρ(k) + 1]

∙
Rxw(k)

px(k)
− Rnw(k)

pn(k)

¸
. (15)

If w is modeled as deterministic (nonrandom), then Rxw(k) = E[x(i)y
∗(i)] and

Rnw(k) = E[n(i)y
∗
n(i)], where the asterisk denotes the complex conjugation. Thus, we can

avoid estimating the matrices Rx and Rn by finding estimators of E[x(i)y
∗(i)] and

E[n(i)y∗n(i)].

A simplification that ultimately reduces the amount of computation by nearly a factor of

two is obtained by observing that x(i) is obtained by sampling a continuous-time vector of

complex envelopes. In each array branch, the thermal noise is independent of the noise in
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the other branches, and each desired or interference signal is a delayed version of the

corresponding signal in the other branches. Therefore, the circular symmetry of the

complex envelopes (appendix A) implies that

E[x(i)xT (i)] = 0 (16)

and

E[n(i)nT (i)] = 0 (17)

where MT denotes the transpose of M. The adaptive-filter output can be decomposed as

y(i) = yr(i) + jyi(i) (18)

where yr(i) and yi(i) are the real and imaginary parts of y(i), respectively. If the weight

vector is modeled as deterministic between iterations, then equation 2 and 16 imply that

E[x(i)yr(i)] = E

∙
x(i)

½
1

2
xH(i)w(k) +

1

2
xT (i)w∗(k)

¾¸
=
1

2
E
£
x(i)xH(i)

¤
w(k) (19)

where the index i refers to a sample taken between weight iterations k and k + 1. This

equation and equation 12 yield

Rxw(k) = 2E[x(i)yr(i)]. (20)

Similarly,

Rnw(k) = 2E[n(i)ynr(i)] (21)

where ynr(i) is the real part of yn(i). Equations 2 and 16 imply that E[y
2(i)] = 0, and the

substitution of equation 18 yields E[y2r(i)] = E[y
2
i (i)] and E[yr(i)yi(i)] = 0. Therefore,

px(k) = E[|y(i)|2] = 2E[y2r(i)]. Similarly, pn(k) = 2E[y2nr(i)].

To derive the maximin algorithm, let p̂x(k) and p̂n(k) denote estimates of E[y
2
r(i)] and

E[y2nr(i)], respectively, following weight iteration k. The estimate of ρ following iteration k

is bρ(k). Let cx(k) and cn(k) denote estimates following iteration k of the input correlation
vector E[x(i)yr(i)] and the interference-plus-noise correlation vector E[n(i)ynr(i)],

respectively. The adaptation sequence is defined as α(k) = μ0(k)[bρ(k) + 1]. Substituting
these estimates and the preceding results into equation 15, we obtain the maximin

algorithm:

w(k + 1) = w(k) + α(k)

∙
cx(k)

p̂x(k)
− cn(k)
p̂n(k)

¸
, k ≥ 0 (22)
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where w(0) is the deterministic initial weight vector. As the adaptive weights converge, the

interference components of cx(k) and p̂x(k) decrease. Thus, the first term within the

brackets can be interpreted as a signal term that enables the algorithm to direct the array

beam toward the desired signal. The second term within the brackets is a noise term that

enables the algorithm to null interference signals.

The adaptation sequence α(k) should be chosen so that E[w(k)] converges to a nearly

optimal steady-state value. It is also intuitively plausible that α(k) should decrease rapidly

as E[w(k)] converges. A suitable candidate is

α(k) = α
p̂n(k)

t̂(k)
(23)

where t̂(k) is an estimate of the total interference and noise power entering the array, and

α is the adaptation constant. The convergence analysis of appendix B and the subsequent

simulation results confirm that this choice is effective and robust, provided that 0 < α < 4.

Another adaptation sequence that works well (2 ), (3 ) is α(k) = αp̂n(k)/p̂x(k), but the best

choice for α in this sequence depends on the SINR at each input to the adaptive filter.

The remaining issue is the choice of estimators for t̂(k), cx(k), cn(k), p̂x(k), and p̂n(k). The

specific nature of the spread-spectrum signals allows blind estimates to be made without

depending on known steering vectors or reference signals.

3. Maximin Processor

To implement the maximin processor, it is necessary to separate the interference from the

total signal x(i), which includes both the desired signal and the interference. After each

hop, the frequency-hopping signal has a carrier frequency fh and its spectrum is largely

confined to a frequency channel with one-sided bandwidth B, as depicted in figure 2. In

each branch of the maximin processor following an array antenna, the frequency hopping is

removed and the current frequency channel or signal channel is downconverted to

baseband. A signal filter then extracts the total signal in the signal channel. To cancel the

interference imbedded in x(i), the receiver measures the interference in a monitor channel,

which is a nearby frequency channel or spectral region with a center frequency offset by

fo ≥ B (24)

from the carrier frequency. For this measurement, the maximin processor in each branch

downconverts the monitor channel to baseband. After the downconversion, a baseband

6



B B

0 fh fh + fo
frequency

Signal channel Monitor channel

Figure 2. Signal channel and monitor channel during hop dwell time.

monitor filter extracts the interference in the monitor channel. Ideally, the spectrum of an

interference signal overlaps the signal and monitor channels so that the interference

components in the signal-filter and monitor-filter outputs have the same second-order

statistics. After a sufficient number of hops, each monitor filter will process most of the

interference that originates from a particular direction and spectrally overlaps the hopping

band. The outputs of all the branch signal and monitor filters are used by the maximin

algorithm to enable interference cancellation and desired-signal enhancement. If spectral

splatter of the desired-signal spectrum into the monitor filter may lead to significant

desired-signal cancellation by the adaptive algorithm, then fo > B may be necessary.

Figure 3 illustrates the principal components of the initial processor behind an antenna of

an adaptive array for a frequency-hopping system. The desired frequency-hopping signal

that arrives at array antenna k is

sk(t) = cos[2πfh(t)t+ φ(t− tk0) + φk0] (25)

where fh(t) represents the time-varying carrier frequency, φ(t) represents the data

modulation, tk0 is the delay at antenna k, and φk0 is the phase shift at antenna k. The

front-end devices include a bandpass filter that excludes noise outside the hopping band.

Dehopping by mixing the received signal with a local synchronized frequency-hopping

replica changes the variable carrier frequency into a fixed intermediate frequency (IF)

denoted by fi. In the implementation shown in figure 3, the IF signal passes through an

antialiasing IF filter and then is sampled by an analog-to-digital (A/D) converter. Let Ts
denote the symbol duration. For some positive integer L, the sampling interval is

T0 = Ts/L. It is assumed that the antennas are close enough that the different delays at the

antennas cause a negligible variation in the data modulation, and thus tk0 = t0. Assuming

perfect timing synchronization of the local frequency-hopping replica, the discrete-time IF

desired signal is

sk(i) = cos[2π(fi + δ)T0i+ φ(T0i− t0) + φk0] (26)

where δ denotes the carrier-offset error resulting from imperfect frequency synchronization

of the local frequency-hopping replica.

7



Timing and Control

Antenna Front-end

devices

FH replica

Dehopped

signal
IF filter

A/D

converter

IF

signal
Baseband

converter

Branch

sequence

Figure 3. Dehopping and initial processing in a branch.

A complex-valued branch sequence is produced when the sampled signal is digitally

downconverted to baseband and its complex envelope is extracted. The baseband converter

first produces the in-phase and quadrature components of sk(i). The quadrature

component is produced by passing sk(i) through a digital Hilbert transformer (10 ) while

the in-phase component is produced by delaying sk(i) appropriately. The in-phase

component is the real part and the quadrature component is the imaginary part of the

complex-valued analytic signal, which has no positive frequency components. The

spectrum of the analytic signal is downconverted to baseband by multiplying the analytic

signal by exp(−j2πfiT0i), which gives the desired component of the kth branch sequence:

sbk(i) = exp {j[2πδT0i+ φ(T0i− t0) + φk0]} . (27)

This component is the discrete-time complex envelope of the dehopped desired signal. The

phase shift φk0 reflects the different arrival times of the desired signal at the array

antennas. Instead of sampling the IF signal, a direct downconversion of the IF signal to

baseband is possible but entails the use of four mixers and their associated filters in each

branch to accommodate the production of in-phase and quadrature components for both

the signal and monitor channels.

To capture the energy in both the signal and monitor channels, the IF filter passband must

encompass the observed band fi − B/2 ≤ |f | ≤ fi + fo +B/2, where B is large enough to
accommodate the carrier-offset error δ. To prevent aliasing, the upper cutoff frequency of

the filter must be no larger than 1/2T0 = L/2Ts, which is half the sampling rate.

Therefore, the number of samples per symbol must satisfy

L ≥ 2Ts(fi + fo +B/2). (28)

To prevent the overlapping of the positive and negative frequency components in the

observed band, which will distort the spectrum of the filter output, it is necessary that

fi ≥ B/2. (29)
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The downconversion of the analytic signal can be simplified (10 ) if fi = 1/4T0 = L/4Ts.

Substitution into the previous inequalities indicates that both are satisfied if

L ≥ 4Ts(fo +B/2), fi = L/4Ts. (30)

In the maximin processor illustrated in figure 4, each branch sequence is applied to a signal

filter. A further downconversion of each branch sequence by fo provides the complex

envelopes of the monitor-channel signals. The branch sequence x1(i), each component of

which is a signal-filter input, is used to produce

x2(i) = x1(i) exp(−j2πfoT0i) (31)

each component of which is a monitor-filter input. The baseband signal and monitor filters

are identical with passbands such that |f | ≤ B/2 so that the interference components of
the two filter outputs are similar. The signal-filter and the monitor-filter outputs are

components of x(i) and n̂(i), respectively, the vectors applied to the adaptive filter. The

vector n̂(i) provides an estimate of the interference and noise in x(i).

The adaptive filter executes the maximin algorithm, which seeks to maximize the SINR at

the input to the digital demodulator. The architecture of the adaptive filter is illustrated in

figure 5. The vectors applied to the adaptive filter are x(i) and n̂(i), and m samples are

generated per weight iteration. The adaptive filter produces the output

yr(i) = Re[w
H(k)x(i)], i = km+ 1, · · · , (k + 1)m (32)

Branch

sequence

e(i)

e(i)
To

demodulator

Adaptive

filter

SF

MF

SF

MF

Figure 4. Maximin processor with SF = signal filter, MF = monitor filter, and e(i) =
exp(−j2πfoiTs/L).
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^

^

x
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Figure 5. Adaptive filter that executes maximin algorithm.

where sample i is taken after weight iteration k. This output is applied to the demodulator

and is used in the estimators

cx(k) =
1

m

(k+1)mX
i=km+1

x(i)yr(i), k ≥ 0 (33)

and

p̂x(k) =
1

m

(k+1)mX
i=km+1

y2r(i), k ≥ 0 (34)

which are unbiased when x(i) and yr(i) are stationary processes between weight iterations.

The adaptive filter also generates

ŷnr(i) = Re[w
H(k)n̂(i)], i = km+ 1, · · · , (k + 1)m . (35)

The critical requirement of n̂(i) is for it to have the same second-order statistics as n(i),

the undesired component of x(i). If the spectrum of an interference signal overlaps the

signal and monitor channels, then the vector

ne(i) = n̂(i) exp(−j2πfoiTs) (36)
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provides an estimate of the signal-filter output n(i). Treating the weight vector as a

constant, observing that E[n(i)nH(i)] ≈ E[ne(i)nHe (i)] = E[n̂(i)n̂H(i)], and calculating as
in equation 18, we obtain

E[n̂(i)ŷnr(i)] ≈ E[n(i)ynr(i)]. (37)

Therefore, an estimator of the interference-plus-noise correlation vector at weight iteration

k is

cn(k) =
1

m

(k+1)mX
i=km+1

n̂(i)ŷnr(i), k ≥ 0. (38)

Similarly, an estimator proportional to the interference-plus-noise output power is

p̂n(k) =
1

m

(k+1)mX
i=km+1

ŷ2nr(i), k ≥ 0. (39)

Both of these estimators are unbiased when n̂(i) and ŷnr(i) are stationary processes

between weight iterations.

A recursive estimator of the total interference-plus-noise power entering the array is

t̂(k) =

(
μt̂(k − 1) + 1−μ

m

P(k+1)m
i=km+1 k n̂(i) k2, k ≥ 1

1
m

Pm
i=1 k n̂(i) k2, k = 0

(40)

where k v k denotes the Euclidean norm of v, μ is the memory factor, and 0 ≤ μ ≤ 1. This
estimator is unbiased when n̂(i) is a wide-sense stationary process. The memory factor is

useful in a nonstationary environment, which may be due to the presence of partial-band

interference. If μ = 0, then when the desired signal occasionally hops into a frequency

channel with interference, the adaptation sequence may at first be too small to enable the

rapid adaptation of the maximin algorithm to this interference. However, if μ is sufficiently

large, then the maximin algorithm responds rapidly to partial-band interference.

The output sequence produced by the adaptive filter is applied to the digital demodulator.

Ideally, the desired-signal component of the demodulator input should be the undistorted

discrete-time complex envelope of the desired signal. Toward this goal, the signal filters in

the maximin processor should be designed to introduce negligible distortion over the

demodulator passband. If such filters are not feasible, then the demodulator input can be

obtained by the processing shown in figure 6. The weight vector computed by the adaptive

filter is applied to a device that computes the inner product of this vector and x(i), the

vector of branch sequences, each of which includes an undistorted discrete-time desired

sequence. The resulting inner product is applied to the demodulator, which provides the

appropriate filtering.

11



Adaptive

filter

Branch sequences

To demodulatorInner

product

Weight

vector

Figure 6. Processing for no distortion of demodulator input.

If the circular symmetry is not used in the derivation of the maximin algorithm, then an

analogous derivation yields a slightly more complicated alternative algorithm (appendix

C). Simulation experiments indicate that the alternative algorithm offers no significant

performance advantage relative to the maximin algorithm, despite requiring twice as much

computation, and tends to generate very large weights unless the weight vector is

normalized. Thus, the alternative algorithm is not considered further.

Multipath components of the desired signal are not cancelled by the maximin algorithm

because their spectra occupy only the signal channel and are insignificant in the monitor

channel. However, the beamforming generated by the algorithm often excludes those

multipath signals that arrive from directions much different from the direction of the main

frequency-hopping signal.

Prior to acquisition of the frequency-hopping pattern (6 ), the frequency synthesized by the

receiver differs from the received carrier frequency. Consequently, the desired signal is

usually absent from the signal-filter outputs and the maximin algorithm is ineffective. The

power-minimization algorithm (11 ) might be used to assist in the acquisition of the

frequency-hopping pattern by forming nulls in the directions of the interference signals.

However, it will rarely be necessary because frequency hopping inherently produces time

intervals with little or no interference in the signal channel. During these intervals, a single

antenna output can be processed to enable rapid acquisition. After verification of the

acquisition, the full adaptive array and the maximin algorithm may be activated.

The computational cost per weight iteration of the maximin algorithm can be estimated in

terms of the number of real multiplications, real additions, and real divisions.

1. Equation 32 indicates that yr(i) requires the evaluation of an inner product with N

terms. Since each term requires the calculation of only the real part of a complex

multiplication, yr(i) requires 2N real multiplications. Similarly, ŷnr(i) requires 2N real

multiplications.
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2. Since the factor 1/m cancels in the ratios appearing in the maximin algorithm, it suffices

to calculate mp̂x(k), mp̂n(k), mt̂(k), mcx(k), and mcn(k). Equation 34 indicates that

mp̂x(k) requires m real multiplications for the squaring operations and m− 1 real additions.
Similarly, mp̂n(k) requires m real multiplications and m− 1 real additions. Each squared
norm in equation 40 requires 2N real squaring operations and 2N − 1 real additions. Thus,
mt̂(k) requires 2Nm+ 3 real multiplications and (2N − 1)m+ 1 real additions. Equations
33 and 38 indicate that each component of mcx(k) or mcn(k) requires m multiplications of

a complex number by a real number, which requires 2m real multiplications. Each

component requires m− 1 complex additions or 2(m− 1) real additions. Thus, both
mcx(k) and mcn(k) require 2Nm real multiplications and 2N(m− 1) real additions.

3. Equation 23 indicates that the calculation of α(k) requires 1 real multiplication and 1

real division.

4. Once all the factors in equation 22 have been calculated, the evaluation of each

component of equation 22 requires 4 real divisions, 2 real multiplications, and 2 complex

additions or 4 real additions. Thus, the evaluation of equation 22 requires 4N real

divisions, 2N real multiplications, and 4N real additions.

Summing the preceding results, it is found that each iteration of the maximin algorithm

requires 4N + 1 real divisions, 6Nm+ 6N + 2m+ 4 real multiplications, and 6Nm+m− 1
real additions. Therefore, the computational cost of the maximin algorithm per iteration is

O(mN) real multiplications or divisions and O(mN) real additions. This cost is of the

same order as that of the partial-rank algorithm (8 ). The computational cost of the

maximin algorithm per sampling interval is O(N) real multiplications or divisions and

O(N) real additions, which is on the order of the cost of the classical least-mean-squares

(LMS) algorithm. In the subsequent simulation experiments, N = 4 and m = 100, which

implies that the cost of each weight iteration of the maximin algorithm is 17 real divisions,

2628 real multiplications, and 2499 real additions.

4. Anticipative Maximin Algorithm

The monitor filter produces an approximation or estimate of the interference and then uses

this estimate for interference cancellation. The monitor filter produces this estimate by

observing a spectral region that has little desired-signal energy. An anticipative filter can

observe a temporal region without desired-signal energy to produce another interference

estimate that potentially allows additional cancellation by the anticipative maximin

algorithm. This capability ultimately is due to the receiver’s knowledge of the

frequency-hopping pattern.
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As illustrated in figure 7, the dehopping and initial processing in each of two parallel

subbranches is similar to that shown in figure 3. The received signal is mixed with

sinusoids at frequencies fh− fi and fh1− fi, where fh is the current carrier frequency, fh1 is
the carrier frequency after the next hop, and fi is the intermediate frequency. The upper

subbranch produces the same output as the branch of figure 3, while the lower subbranch

produces an output derived from the next signal channel. Each IF filter 1 has a passband

such that fi −B/2 ≤ |f | ≤ fi + fo +B/2, which corresponds to the current signal and
monitor channels. Each IF filter 2 has a passband that covers fi −B/2 ≤ |f | ≤ fi +B/2,
which corresponds to the next signal channel. The parameters fi and L satisfy equations

30 or 28 and 29. The parallel A/D and baseband converters are identical and produce the

digital samples of the main branch sequence and the anticipative branch sequence,

respectively.

These sequences are applied to the anticipative maximin processor of figure 8. The main

processor, which is identical to the maximin processor of figure 4, produces the

demodulator input. Each anticipative branch sequence is applied to a monitor filter with a

passband such that |f | ≤ B/2. The output of each monitor filter is a component of the
vector n̂a(i), which estimates the interference-plus-noise that will be present in the signal

channel after the next frequency hop. The signal-filter outputs of the main processor

provide the same vector x(i) used by the adaptive filter in the main processor. Both n̂a(i)

and x(i) are applied to the anticipative adaptive filter. The anticipative filter adapts its

weight vector, which converges toward the optimal weight vector for the next carrier

frequency. After each hop, the weight vector associated with the new carrier frequency is

transferred from the anticipative filter to the main processor. Transfers are triggered by the

clock that controls the frequency-hopping carrier transitions.

Antenna
A/D

IF

filter 1

FED

IF

filter 2 A/D

BBC

BBC

Anticip.
branch

sequence

Main
branch

sequence

fh   fi

fh1   fi

Figure 7. Dehopping and initial processing in two parallel subbranches of a branch.
FED=front-end devices; BBC=baseband converter.
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Figure 8. Anticipative maximin processor. MF=monitor filter.

The anticipative weight vector wa(k) is computed by the anticipative filter at iteration k.

The recursive equation is a modified version of the maximin algorithm:

wa(k + 1) = wa(k) +

½
α(k)

∙
cx(k)

p̂x(k)
− cn(k)
p̂n(k)

¸¾
a

, k ≥ 0 (41)

where the subscript a denotes a quantity computed by the anticipative filter. The

adaptation constant and the memory factor used in this equation are set equal to their

values in the main processor. The weight vector in the main processor is updated by

computing equation 22, except at sampling instants occurring at the end of a dwell interval

or during switching times. At these instants, the weight vector in the main processor is set

equal to that of the anticipative filter. The switching times occur when k = nk0 in the

main processor, where k0 is the number of iterations per hop and n = 1, 2, . . . is the hop

number. Thus, the algorithm in the main processor becomes

w(k + 1) = w(k) + α(k)

∙
cx(k)

p̂x(k)
− cn(k)
p̂n(k)

¸
, k + 1 6= nk0, k ≥ 0

w (nk0) = wa (nk0) , n = 0, 1, . . . (42)

Equations 41 and 42 constitute the anticipative maximin algorithm.

The computational cost per iteration of the anticipative maximin algorithm is nearly

double that of the maximin algorithm if k0 >> 1. From the previously evaluated

computational cost of the maximin algorithm, the computational cost per iteration of the
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anticipative maximin algorithm is approximately 8N + 2 real divisions, 12Nm+ 12N

+ 4m+ 8 real multiplications, and 12Nm+ 2m− 2 real additions. In the subsequent
simulation experiments, N = 4 and m = 100, which implies that the cost of each weight

iteration of the anticipative maximin algorithm is approximately 34 real divisions, 5256

real multiplications, and 4998 real additions.

The anticipative maximin algorithm expedites the convergence of the mean weight vector

in the presence of stationary partial-band interference at the cost of additional hardware

and nearly a doubling of the computational requirements of the maximin algorithm.

5. Simulation Experiments

In the simulation experiments, the array consists of 4 omnidirectional antennas located at

the vertices of a square. Let λ denote the wavelength corresponding to the center frequency

of the desired signal, which is 3 GHz. The edge length or the separation between adjacent

antennas is d = λ or d = 1.5λ. All signals are assumed to arrive as plane waves with no

fading. The frequency-hopping signal is modulated by binary minimum-shift keying (MSK)

and has a carrier frequency that is randomly chosen from a hopset. Each frequency channel,

which includes a hopset frequency, has a bandwidth B = 100 kHz. The hopping band has a

bandwidth Wh, and there are Wh/B contiguous frequency channels. The hop dwell time is

1 ms. The frequency-hopping signal arrives from a direction 20 degrees counterclockwise

from the normal to one of the edges and has a frequency offset equal to δ = 1 kHz after

downconversion, which models imperfect frequency synchronization. Perfect timing

synchronization of the local frequency-hopping replica is assumed. The sequence of data

bits is randomly generated at the rate of 1/Ts = 100 kbps. The sample rate is 1.0

megasamples per second, which corresponds to L = 10 samples per bit. The signal and

monitor filters are modeled as digital Chebyshev filters of the second kind (10 ) with the

3-dB bandwidths equal to B. The Chebyshev filter was selected because it has a mild

group-delay variation with frequency that tends to limit signal distortion. The monitor

channel is offset by the minimal amount fo = 100 kHz because the effects of contamination

by the desired signal were found to be minor when the Chebyshev filters are used. Thus,

equation 30 is satisfied if fi = 250 kHz. The thermal noise in each branch sequence is

modeled as bandlimited complex Gaussian noise. The anticipative maximin and maximin

algorithms are implemented with α = 0.1 and μ = 0.99. These values usually provide close

to the best overall performance against the modeled partial-band interference. A weight

iteration occurs after each 10 data bits. The weight-iteration rate and the adaptation

constant are both partly selected to ensure that the weights do not increase to excessively

large values. For each simulation trial, the initial weight vector of each adaptive processor

is w(0) = [1 0 0 0], which forms an omnidirectional array pattern. The IF filters are

modeled as ideal rectangular filters. The signal-to-noise ratio (SNR) is 14 dB at the output
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of each signal filter and monitor filter in the adaptive processors. Table 1 lists the principal

system parameter values used in the simulation experiments unless otherwise stated.

High-power, partial-band interference is a realistic and significant threat to frequency-

hopping communications. Since partial-band interference is not always present in the

monitor channel, it cannot be cancelled as rapidly as full-band interference. Interference

that occupies only a small part of the hopping band, or even frequency-hopping

interference signals, can be suppressed by the adaptive array supplemented by an

error-control code. If the interference is observed by a monitor filter often enough, it is

rapidly suppressed by the adaptive array; if it is observed only occasionally, then the

interference is primarily suppressed by the error-control code. In the simulation

experiments, each of 1, 2, or 3 interference signals has its power distributed among

equal-power tones (continuous-wave signals) in frequency channels that cover the fraction

0.1 of the hopping band unless otherwise stated. For each interference signal, the

interference-to-signal ratio (ISR) is equal to 0 dB in each frequency channel that contains a

tone. After the downconversions, the interference signals have different initial phase shifts

and residual frequency offsets equal to 10 kHz, 13 kHz, and 16 kHz, respectively, which

reflect the mismatch of the tone frequencies and the hopset carrier frequencies. Multiple

interference signals do not add coherently at all antennas, even if they have the same

carrier frequencies, because they arrive from different directions and have different initial

phase shifts. Unless otherwise stated, it is assumed that interference occupies contiguous

Table 1. Basic system parameters.

Parameter Value
Array geometry square with 4 antennas
Center frequency 3 GHz
Antenna separation λ or 1.5λ
Direction of desired signal 20◦

Hop dwell time 1 ms
Modulation MSK
Data rate 100 kbs
Filter bandwidths 100 kHz
Monitor channel offset 100 kHz
Frequency offset of desired signal 1 kHz
Sampling rate 1.0 Ms/s
SNR at each SF or MF output 14 dB
Adaptation constant α = 0.1
Memory factor μ = 0.99
ISR per channel for each interf. signal 0 dB
Fraction of band covered by interf. sig. 0.1
Frequency offsets of interference 10, 13, and 16 kHz
Initial weight vector [1 0 0 0]
Bits per weight iteration 10

17



frequency channels and that an interference tone in the signal filter is always accompanied

by a tone in the monitor filter. The latter assumption is a good approximation for

partial-band interference over a substantial fraction of the hopping band when the signal

and monitor channels are adjacent. The SINR at the processor output is calculated after

each sample time and then averaged over all samples in the time interval between a weight

iteration and a preceding one to determine the SINR at each weight iteration. The SINR is

observed to fluctuate, but tends to gradually increase until it reaches a steady-state

condition with a smaller residual fluctuation.

Figures 9 to 17 show the results for typical simulation trials in which d = λ, Wh = 30 MHz,

and there are 100 frequency hops per trial. A typical trial for the maximin algorithm, the

parameter values of table 1, and one interference signal arriving at a 40◦ angle with a

frequency offset equal to 10 kHz is illustrated in figure 9, which shows the SINR variation

with the weight iteration number. The SINR does not drop below 0 dB the first time the

interference is encountered in the signal channel because beamforming in the desired-signal

direction has already occurred and a partial grating null near the interference-signal

direction has already been formed. Between observations of the interference signal, which is

observed only 10 percent of the time, the weights tend to slowly drift toward the values

they would have without the interference. A steady-state condition is gradually reached,

and subsequent SINR fluctuations tend to be comparable to those that would occur in the

absence of interference. Since the arrival angle of the interference is only 20◦ apart from

the arrival angle of the desired signal, the angular separation between the two signals is

within the half-power beamwidth of the array. Much better performance against a single

interference signal is achieved if the angular separation exceeds the half-power beamwidth.

In figure 10, the conditions are identical to those of figure 9 except that the anticipative

maximin algorithm is used. A faster convergence to the steady state is observed.

Let θ denote an arrival angle defined as the angle in the counterclockwise direction from

the normal to one of the array edges. Let sr(θ) denote the steering vector or array response

vector, which is the array response to an ideal plane wave arriving at angle θ (6 ), (7 ), (8 ).

For a square array with 4 antennas, the components of the steering vector are

sr1 = 1, sr2 = exp(−j2π
d

λ
sin θ)

sr3 = exp(−j2π d
λ
cos θ), sr4 = exp[−j2π

d

λ
(sinθ + cos θ)]. (43)

The array gain pattern after weight iteration k is

G(θ, k) =

¯̄
wH(k)sr(θ)

¯̄2
kw(k)k2

. (44)
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Figure 9. SINR in simulation trial for maximin algorithm with Wh = 30 MHz and one
interference signal at 40◦.

Figure 10. SINR in simulation trial for anticipative maximin algorithm with Wh = 30
MHz and one interference signal at 40◦.
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Figure 11. Array gain pattern at end of simulation trial for anticipative maximin algo-
rithm with Wh = 30 MHz and one interference signal at 40

◦.

The array gain pattern at the end of the simulation trial of figure 10, which is almost

identical to the one at the end of the simulation trial of figure 9, is depicted in figure 11. A

null deeper than −20 dB in the approximate direction of the interference signal and a
mainlobe slightly displaced from the direction of the desired signal have formed along with

other grating nulls and grating lobes.

Figure 12 depicts the SINR variation in a typical simulation trial under the conditions of

figure 9 except that μ = 0. The absence of convergence to the steady-state performance of

figure 9 after 100 hops is apparent. The reason is the sporadic large decrease in the

magnitude of the adaptation sequence, which prevents rapid weight adaptation when

interference is present in the signal channel. In general, setting μ > 0 is useful against

partial-band interference and neutral in the absence of interference.

When more than one interference signal is present, the adaptation becomes more difficult

as the array encounters a more rapidly varying signal environment. The performance of the

adaptive algorithm is highly dependent on the angular separations among the arriving

interference signals and the desired signal. Assuming that the interference signals are

adequately separated from the desired signal, separations of the interference signals from

each other on the order of a beamwidth can be much more easily accommodated than

separations on the order of 0.5 or 1.5 beamwidths. Figure 13 illustrates the SINR variation

in a typical simulation trial for the same conditions as figure 9, except that two interference

signals arrive at angles 40◦ and −10◦ with frequency offsets of 10 and 13 kHz, respectively.
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Figure 12. SINR in simulation trial for maximin algorithm with Wh = 30 MHz, one
interference signal at 40◦, and no memory factor.

Figure 13. SINR in simulation trial for maximin algorithm with Wh = 30 MHz and two
interference signals at 40◦ and −10◦.

A comparison between figures 13 and 9 indicates that the convergence to steady state is

slowed due to the presence of the second interference signal, but not greatly because the

signal at −10◦ arrives at an angle near a grating null that naturally tends to form when the

signal at 40◦ is nulled. As shown in figure 14, the anticipative maximin algorithm expedites

convergence.
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Figure 14. SINR in simulation trial for anticipative maximin algorithm with Wh = 30
MHz and two interference signals at 40◦ and −10◦.

For the conditions of figure 13, if each interference signal occupies the fraction 0.5 of the

hopping band, then the convergence is more rapid, as shown in figure 15. The increase in

the convergence rate occurs because the monitor filter observes the interference for longer

time intervals.

Figure 15. SINR in simulation trial for maximin algorithm with Wh = 30 MHz and two
interference signals at 40◦ and -10◦, each of which occupies 0.5 of the hopping
band.
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Figure 16 depicts the SINR variation in a typical simulation trial under the conditions of

figure 13 except that the tones associated with each interference signal are randomly

distributed throughout the hopping band. This scenario models sophisticated jamming.

Since an interference tone in the signal channel does not necessarily imply a simultaneous

interference tone in the monitor channel, the interference cancellation is impeded, and the

convergence to a steady state is slowed. The anticipative maximin algorithm greatly

improves the convergence rate, as illustrated in figure 17.

Figure 16. SINR in simulation trial for maximin algorithm with Wh = 30 MHz, two
interference signals at 40◦ and −10, and randomly distributed tones.

The results of 10 representative simulation experiments for a 30 MHz bandwidth with

d = λ are summarized in table 2. The first six rows of table 2 show the statistics for the

conditions of figures 9, 10, 13, 14, 16, and 17, respectively. The first column gives the

arrival angles of 1, 2, or 3 interference signals. The second column indicates whether the

anticipative maximin or the maximin algorithm is used. The third column indicates when

the interference tones occupy randomly distributed rather than contiguous frequency

channels. The SINRs for 20 simulation trials with 50 hops and 500 weight iterations per

trial are averaged to obtain the average SINR and are used to calculate the standard

deviation of the average SINR, which are listed in the fourth and fifth columns of the table.

The standard deviation of the average SINR is an indicator of the rapidity and degree of

convergence. The SINRs for the last 20 weight iterations of each of 20 simulation trials

with 100 hops and 1000 weight iterations per trial are averaged to obtain the final SINR

and are used to calculate the standard deviation of the final SINR, which are listed in the

sixth and seventh columns of the table. The standard deviation of the final SINR is an

indicator of the degree of convergence to a steady state after 80 hops. The final SINR is

often less than the average SINR because the weight adaptation that enables interference
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Figure 17. SINR in simulation trial for anticipative maximin algorithm with Wh = 30
MHz, two interference signals at 40◦ and −10◦, and randomly distributed
tones.

Table 2. Simulation results for Wh = 30 MHz and d = λ.

Interference Rand. Average Stand. Final Final St.
Angles Anticip. Distr. SINR(dB) dev.(dB) SINR(dB) dev.(dB)
40◦ no no 18.67 1.73 18.81 1.41
40◦ yes no 19.06 1.48 19.04 1.35

40◦, −10◦ no no 18.36 2.34 18.51 1.61
40◦, −10◦ yes no 18.94 1.56 18.85 1.36
40◦, −10◦ no yes 16.96 5.22 18.04 2.44
40◦, −10◦ yes yes 18.70 2.61 18.78 1.40

40◦, −10◦, 85◦ no no 17.07 3.04 17.11 1.94
40◦, −10◦, 85◦ yes no 17.83 2.00 17.55 1.52

30◦ no no 16.06 3.19 15.91 2.31
30◦ yes no 16.96 2.44 16.72 2.12

cancellation reduces the SINR during interference-free dwell times. The decline in the

average SINR as an interference signal is added, and hence the fraction of interfered

frequency channels increases, is much less than the decline of nearly 2 dB that would occur

without the adaptive algorithm. The array of 4 antennas is often able to substantially

cancel 3 partial-band interference signals, as indicated in the table.

The final two rows illustrate the limitations imposed by the resolution of the array, which

is its capability to distinguish between signals arriving at different angles. The statistics

indicate the improvement provided by the anticipative maximin algorithm when the arrival
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angles of the desired signal and the interference differ by only 10◦, but the performance is

still substantially degraded from the performance when the arrival angles differ by 20◦.

The resolution improves with increases in the array aperture or antenna separations.

However, an enlarged aperture causes an increase in the number of grating lobes, which

impedes the formation of nulls against two or more interference signals. Table 3 indicates

the effects of an increase in the array aperture by increasing the edge length to d = 1.5 λ.

The superior resolution of the larger array yields greatly improved performance when a

single interference signal arrives from nearly the same direction as the desired signal. The

performance against two or three interference signals degrades, as is observed from a

comparison of results listed in tables 2 and 3.

The effect of the ISR per channel is relatively mild. Table 4 lists the results of simulation

experiments with 20 trials, 50 hops per trial, and one interference signal arriving at 40◦

with various power levels. It is observed that the convergence advantage of the anticipative

maximin algorithm increases with the ISR per channel.

Table 3. Simulation results for Wh = 30 MHz and d = 1.5 λ.

Interference Rand. Average Stand. Final Final St.
Angles Anticip. Distrib. SINR(dB) dev.(dB) SINR(dB) dev.(dB)
40◦ no no 19.50 1.48 19.74 1.27
40◦ yes no 19.68 1.48 19.77 1.27

40◦, −10◦ no no 17.27 2.83 17.17 2.05
40◦, −10◦ yes no 17.92 1.92 17.67 1.62
40◦, −10◦ no yes 15.98 4.93 16.88 2.64
40◦, −10◦ yes yes 17.61 2.98 17.57 1.69

40◦, −10◦, 85◦ no no 15.68 3.67 15.32 2.32
40◦, −10◦, 85◦ yes no 16.52 2.31 15.92 1.67

30◦ no no 17.60 2.17 17.67 1.65
30◦ yes no 18.22 1.74 18.10 1.50

Table 4. Simulation results for Wh = 30 MHz, d = λ, and one interference signal at 40◦.

Average Standard
ISR (dB) Anticipative SINR (dB) dev. (dB)
−10 no 19.12 1.64
−10 yes 19.45 1.42
0 no 18.67 1.73
0 yes 19.06 1.48
10 no 18.12 2.37
10 yes 18.69 1.74
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6. Frequency Compensation

Adaptive processing may be impaired if the fractional bandwidth, which is defined as the

hopping bandwidth divided by the center frequency of the hopping band, exceeds a few

percent because the antennas produce only relative phase information. Consider two

antennas of an adaptive array receiving a plane wave, as illustrated in figure 18. The phase

shift of the signal component at frequency f that arrives at one element relative to the

phase of the signal component at the other element is

θ =
2πd

λ
sinφ =

2πdf

c
sinφ (45)

where c is the speed of an electromagnetic wave and φ is the arrival angle of the plane wave

relative to a line perpendicular to the straight line through the two elements. If the

frequency of the received signal component changes to f +∆f , then the phase shift

changes by

∆θ1 =
2πd∆f

c
sinφ =

2πd

λ

µ
∆f

f

¶
sinφ. (46)

In most potential applications, µ
∆f

f

¶
≤ 1
2

µ
λ

d

¶
(47)

which implies that |∆θ1| ≤ π and that ∆θ1 has its maximum magnitude when φ = ±π/2.
If the frequency is constant, but the arrival angle changes from φ to φ+∆φ, then the

phase-shift change is

∆θ2 =
2πd

λ
[sin(φ+∆φ)− sinφ]. (48)

Plane wave

Receiver

φ φ

d

Figure 18. Two array antennas receiving plane wave.
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The phase shift experienced by the two antennas is the same for a frequency change ∆f as

it is for an arrival-angle change ∆φ if

(∆θ1) modulo 2π = (∆θ2) modulo 2π. (49)

This equation has at least one solution if ∆f < f and π/2− φ is sufficiently large. Thus, a

change in frequency due to frequency hopping may be processed as if an equivalent change

occurred in the arrival angle.

As an example, suppose that an adaptive system creates an approximate spatial null in the

direction φ = 0.4π = 72◦ of an interference signal when the carrier frequency of a desired

frequency-hopping signal is f . If the carrier frequency changes to f +∆f such that

∆f/f = 0.05, then equations 46, 48, and 49 indicate that an equivalent arrival-angle

change for the interference is ∆φ = 15.0◦. If ∆φ exceeds the angular width of the original

null after the carrier frequency of the desired signal hops to f +∆f , then the interference

is not immediately cancelled, but further adaptation is required to again establish a spatial

null. If equation 49 is satisfied, then equation 48 implies that the performance degradation

of an adaptive algorithm due to a large fractional bandwidth increases with d/λ and the

arrival angle φ. Since the angular width of a null tends to decrease as the interference

power increases, this degradation increases with the interference power.

Figures 19 and 20 show the results for typical simulation trials in which d = λ, a single

interference signal has an arrival direction φ = 85◦ and an ISR = 10 dB, and the other

parameter values of table 1 are used. The hopping bandwidth is equal to 75 MHz and 300

MHz in figures 19 and 20, respectively. One observes that the larger fractional bandwidth

causes an increase in the SINR variation, as expected from the preceding analysis.

The angular widths of nulls and the main beam can be increased by decreasing the

separation among antennas in the array or inserting adaptive filters behind each antenna,

but then the resolution of signals from similar directions may be inadequate. The

restriction of the frequency change after a hop to a small value maintains the interference

near the center of a spatial null. However, the variety of hopping patterns is reduced,

which diminishes the resistance to frequency-selective fading and multitone jamming. Two

viable methods of frequency compensation for a large fractional bandwidth are spectral

processing and anticipative processing.

Spectral processing is based on dividing the hopping band into a number of spectral regions

and adapting independently when the carrier frequency is in one of the regions. A separate

weight vector associated with each spectral region is stored in a memory device within the

adaptive filter. At the end of the signal dwell interval in a specific spectral region, the

weight vector generated by the adaptive filter is transferred to the memory, where it

replaces a previously stored weight vector associated with this spectral region. Then the

weight vector in the adaptive filter is set equal to the previously stored weight vector
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Figure 19. SINR in simulation trial for anticipative maximin algorithm with Wh = 75
MHz and one interference signal with ISR = 10 dB at 85◦.

Figure 20. SINR in simulation trial for maximin algorithm with Wh = 300 MHz and one
interference signal with ISR = 10 dB at 85◦.
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associated with the new spectral region. This weight vector is updated during the dwell

interval in the new spectral region. Transfers between the memory device and the weight

vector are controlled by the frequency-hopping code generator. As the number of spectral

regions Ns increases, there is a proportional increase in the required number of iterations to

converge to steady state because only 1/Ns of frequency-hopping pulses are associated with

each region. For example, the typical performance displayed in figure 20 can be improved

to that displayed in figure 19 if spectral processing is used with Ns = 4 and a convergence

rate reduced by a factor of 4 is acceptable.

When the anticipative maximin algorithm is used, the anticipative branch sequence in

figure 7 is a function of the interference signal in the next frequency channel and, hence,

frequency compensation can occur for this interference signal. However, the main branch

sequence applied to the anticipative processor is extracted from the current signal channel,

and thus frequency compensation for the desired signal is not possible. Despite this partial

lack of frequency compensation, the anticipative maximin algorithm is useful for wideband

frequency hopping in a partial-band interference environment. An alternative anticipative

algorithm that omits the factor cx/p̂x(k) in equation 42 is found to be counterproductive

because the absence of the desired signal in the anticipative processing causes a distortion

of the array gain pattern.

Figure 21 depicts the results of a typical simulation trial under the same conditions as

figure 20 except that the anticipative maximin algorithm is used. The figure displays an

improved convergence and is very similar to what is obtained for the anticipative maximin

algorithm under the same conditions as figure 19. The results of simulation experiments

with 20 trials and ISR = 10 dB per channel are listed in table 5. They confirm that the

anticipative maximin algorithm is an effective method of frequency compensation. The

performance when the anticipative maximin algorithm is used and Wh = 300 MHz exceeds

the performance when the maximin algorithm is used and Wh = 75 MHz.
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Figure 21. SINR in simulation trial for anticipative maximin algorithm with Wh = 300
MHz and one interference signal with ISR = 10 dB at 85◦.

Table 5. Simulation results for ISR = 10 dB per channel.

Interfer. Average Stand. Final Final St.
Angles Wh(MHz) d/λ Anticip. SINR(dB) dev.(dB) SINR(dB) dev.(dB)
85◦ 75 1 no 18.53 2.17 18.81 1.43
85◦ 75 1 yes 19.00 1.77 19.04 1.31
85◦ 300 1 no 18.29 2.63 18.54 2.07
85◦ 300 1 yes 18.93 1.80 18.99 1.35

40◦, −10◦ 75 1.5 no 16.03 5.33 15.73 3.19
40◦, −10◦ 75 1.5 yes 17.05 2.42 16.40 1.36
40◦, −10◦ 300 1.5 no 15.60 5.82 15.22 4.09
40◦, −10◦ 300 1.5 yes 16.95 2.59 16.41 1.64
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7. Conclusions

The anticipative maximin algorithm uses both spatial and temporal techniques to provide

a frequency-hopping system with a high degree of protection against strong interference

that cannot be accommodated by the frequency hopping and error-control coding alone.

Major advantages of the algorithm are that it does not require training sequences,

decision-directed adaptation, directional information, or elaborate computations such as

eigenanalysis. The algorithm provides frequency compensation when the hopping spans a

wide spectral band. Compared with the maximin algorithm, the anticipative maximin

algorithm provides additional protection against interference at the cost of additional

hardware and nearly a doubling of the computational requirements.
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A. Stationary Stochastic Processes

Consider a real-valued stochastic process n(t) that is a zero-mean, wide-sense stationary

process with autocorrelation

Rn(τ) = E[n(t)n(t+ τ)] (A.1)

where E[x] denotes the expected value of x. The Hilbert transform of this process is the

stochastic process defined as

n̂(t) = H[n(t)] =
1

π

Z ∞
−∞

n(u)

t− udu (A.2)

where it is assumed that the Cauchy principal value of the integral exists for almost every

sample function of n(t). This equation indicates that n̂(t) is a zero-mean stochastic

process. The zero-mean processes n(t) and n̂(t) are jointly wide-sense stationary if their

correlation and cross-correlation functions are not functions of t. Assuming that the

expectation and the integration are interchangeable, equations A-2 and A-1 imply that the

cross-correlation is

Rnn̂(τ) = E[n(t)n̂(t+ τ)] =
1

π

Z ∞
−∞

Rn(u)

τ − u du = R̂n(τ). (A.3)

Since equation A-2 has the form of the convolution of the sample function n(t) with 1/πt,

n̂(t) results from passing n(t) through a linear filter with an impulse response equal to

1/πt. The transfer function of the filter is given by the Fourier transform

F
½
1

πt

¾
=

Z ∞
−∞

exp(−j2πft)
πt

dt (A.4)

where j =
√
−1. This integral can be rigorously evaluated by using contour integration.

Alternatively, we observe that since 1/t is an odd function,

F
½
1

πt

¾
= −2j

Z ∞
0

sin 2πft

πt
dt

= −j sgn(f) (A.5)

where sgn(f) is the signum function defined by

sgn(f) =

⎧⎨⎩ 1, f > 0
0, f = 0
−1, f < 0

(A.6)
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Let G(f) = F{n(t)}, and let Ĝ(f) = F{n̂(t)}. Equations A-2 and A-5 and the convolution
theorem imply that

Ĝ(f) = −j sgn(f)G(f). (A.7)

Because H[n̂(t)] results from passing n(t) through two successive filters, each with transfer

function −j sgn(f),
H[n̂(t)] = −n(t) (A.8)

provided that G(0) = 0. Using equations A-2, A-1, successive changes in integration

variables, and equation A-8, we obtain the autocorrelation of n̂(t) :

Rn̂(τ) = E[n̂(t)n̂(t+ τ)]

=
1

π2

Z ∞
−∞

1

t− udu
Z ∞
−∞

Rn(v − u)
t+ τ − v dv =

1

π

Z ∞
−∞

R̂n(t+ τ − u)
t− u du = −H[R̂n(τ)]

= Rn(τ). (A.9)

Equations A-1, A-3, and A-9 indicate that n(t) and n̂(t) are jointly wide-sense stationary.

The analytic signal associated with n(t) is the zero-mean process defined by

na(t) = n(t) + jn̂(t). (A.10)

The autocorrelation of the analytic signal is defined as

Ra(τ) = E[n
∗
a(t)na(t+ τ)] (A.11)

where the asterisk denotes the complex conjugate. Using equations A-1, A-3, and A-9 to

A-11, we obtain

Ra(τ) = 2Rn(τ) + 2jR̂n(τ) (A.12)

which establishes the wide-sense stationarity of the analytic signal. Since equation A-1

indicates that Rn(τ) is an even function, equation A-3 yields

Rnn̂(0) = R̂n(0) = 0 (A.13)

which indicates that n(t) and n̂(t) are uncorrelated. Equations A-9, A-12, and A-13 yield

Rn̂(0) = Rn(0) = 1/2Ra(0) (A.14)
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The complex envelope of n(t) or the equivalent lowpass representation of n(t) is the

zero-mean stochastic process defined by

nl(t) = na(t) exp(−j2πfct) (A.15)

where fc is an arbitrary frequency usually chosen as the center or carrier frequency of n(t).

The complex envelope can be decomposed as

nl(t) = nc(t) + jns(t) (A.16)

where nc(t) and ns(t) are real-valued, zero-mean stochastic processes. Equations A-10,

A-15, and A-16 imply that

n(t) = Re[nl(t) exp(j2πfct)]

= nc(t) cos(2πfct)− ns(t) sin(2πfct). (A.17)

Substituting equations A-10 and A-16 into A-15 we find that

nc(t) = n(t) cos(2πfct) + n̂(t) sin(2πfct) (A.18)

ns(t) = n̂(t) cos(2πfct)− n(t) sin(2πfct) (A.19)

The autocorrelations of nc(t) and ns(t) are defined by

Rc(τ) = E[nc(t)nc(t+ τ)]. (A.20)

and

Rs(τ) = E[ns(t)ns(t+ τ)] (A.21)

Using equations A-18 and A-19 and then equations A-1, A-3, and A-9, and trigonometric

identities, we obtain

Rc(τ) = Rs(τ) = Rn(τ) cos(2πfcτ) + R̂n(τ) sin(2πfcτ). (A.22)

which shows explicitly that if n(t) is wide-sense stationary, then nc(t) and ns(t) are

wide-sense stationary with the same autocorrelation function. The variances of n(t), nc(t),

and ns(t) are all equal because

Rc(0) = Rs(0) = Rn(0). (A.23)
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A derivation similar to that of equation A-22 gives the cross-correlation

Rcs(τ) = E[nc(t)ns(t+ τ)] = R̂n(τ) cos(2πfcτ)−Rn(τ) sin(2πfcτ). (A.24)

Equations A-22 and A-24 indicate that nc(t) and ns(t) are jointly wide-sense stationary,

which then implies that

Rsc(τ) = E[ns(t)nc(t+ τ)] = Rcs(−τ) (A.25)

Equations A-13 and A-24 give

Rcs(0) = 0. (A.26)

which implies that nc(t) and ns(t) are uncorrelated.

Since n(t) is wide-sense stationary, Rn(−τ) = Rn(τ). It then follows from equation A-3 and

a change of the integration variable that bRn(−τ) = − bRn(τ). Combining these equations
with equation A-24 yields Rcs(−τ) = −Rcs(τ). This equation and equation A-25 indicate
that

Rcs(τ) = −Rsc(τ) (A.27)

Equations A-16, A-23, and A-27 imply that

E[nl(t)nl(t+ τ)] = 0. (A.28)

A complex-valued, zero-mean stochastic process that satisfies this equation is called a

circularly symmetric process. Thus, the complex envelope of a zero-mean, wide-sense

stationary process is a circularly symmetric process.
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B. Convergence of Maximin Algorithm

B.1 Optimal Weight Vector

The SINR at the adaptive-filter output is

ρ =
wHRsw

wHRnw
. (B.1)

We seek to find the weight vector that maximizes the SINR. Since the N ×N correlation

matrices Rs = E[s(i)s
H(i)] and Rn = E[n(i)n

H(i)] are Hermitian and nonnegative definite,

they have complete sets of orthonormal eigenvectors with nonnegative real-valued

eigenvalues. The noise power is assumed to be positive, which implies that Rn is positive

definite and has positive eigenvalues. The spectral theorem of linear algebra indicates that

Rn can be expressed as

Rn =
NX
i=1

λieie
H
i (B.2)

where λi is an eigenvalue and ei is the associated eigenvector.

To derive the weight vector that maximizes the SINR with no restriction on Rs, we define

the Hermitian matrix

A =
LX
i=1

p
λieie

H
i (B.3)

where the positive square root is used. A direct calculation verifies that

Rn = A
2. (B.4)

Since the spectral theorem implies that I =
PN

i=1 eie
H
i , the inverse of A is

A−1 =
LX
i=1

1√
λi
eie

H
i . (B.5)

The matrix A specifies an invertible transformation of w into the vector

v = Aw. (B.6)

We define the Hermitian matrix

C = A−1RsA
−1. (B.7)
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Then equations B-1, B-4, B-6, and B-7 indicate that the SINR can be expressed as a

Rayleigh quotient :

ρ =
vHC v

k v k2 . (B.8)

The original maximization problem has been reduced to the maximization of a Rayleigh

quotient. An alternative derivation of a Rayleigh quotient can be obtained from the

Cholesky decomposition Rn = BB
H , where B is lower triangular with positive diagonal

elements.

Let `1 ≥ `2 ≥ · · · ≥ `N and u1, · · · ,uN denote the eigenvalues and corresponding
orthonormal eigenvectors of C. If v is expanded as

v =
NX
i=1

biui (B.9)

where the {bi} are coefficients, then

vHC v =
NX
i=1

|bi|2`i ≤ `1
NX
i=1

|bi|2 = `max k v k2 (B.10)

where `max = `1 is the largest eigenvalue. Therefore, ρ ≤ `max. Direct substitution
indicates that ρ is maximized by v = ηu, where u is an eigenvector of C associated with

eigenvalue lmax, and η is an arbitrary constant. Thus, the maximum value of ρ is

ρ0 = `max. (B.11)

From equation B-6 with v = ηu, it follows that an optimal weight vector that maximizes

the SINR is

w0 = ηA−1u. (B.12)

The purpose of an adaptive-array algorithm is to adjust the weight vector to converge to

the optimal value, which is given by equation B-12 when the maximization of the SINR is

the performance criterion.

An alternative means of evaluating w0 follows from observing that ρ0w0 = ρ0A
−1u =

A−1Cu = A−2RsA
−1u = R−1n Rsw0. Therefore, w0 is an eigenvector of R

−1
n Rs with

eigenvalue ρ0. A substitution of R
−1
n Rsw0 = ρ0w0 into equation B-1 yields ρ = ρ0, which

proves that ρ0 is the largest eigenvalue associated with R
−1
n Rs.
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Let s(i) denote the component of s(i) derived from a fixed reference antenna. In practical

spread-spectrum systems, the despread desired signal is sufficiently narrowband that its

copies in all the branches are nearly aligned in time. Therefore,

s(i) = s(i)s0 (B.13)

where s0 is a steering vector of complex numbers that represent the relative amplitudes and

phase shifts at the antenna outputs. When equation B-13 is a valid representation, equation

B-12 can be simplified. The substitution of equation B-13 into Rs = E[s(i)s
H(i)] yields

Rs = psis0s
H
0 (B.14)

where

psi = E[|s(i)|2]. (B.15)

The substitution into equation B-14 into B-7 indicates that C may be factored:

C = psiff
H (B.16)

where f = A−1s0. The factorization explicitly shows that C is a rank-one matrix, which has

only one nonzero eigenvalue. By direct substitution, it is found that the eigenvector

associated with the nonzero eigenvalue is

u = f = A−1s0 (B.17)

and the eigenvalue is

`max = psi k f k2 . (B.18)

Substituting equation B-17 into B-12 and then observing that R−1n = A−2, we obtain the

optimal weight vector :

w0 = ηR−1n s0 (B.19)

where η is an arbitrary constant. The maximum value of the SINR, obtained from

equations B-11, B-18, and B-17 is

ρ0 = psis
H
0 R

−1
n s0. (B.20)
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B.2 Convergence of Mean Weight Vector

The highly nonlinear nature of the maximin algorithm precludes a completely rigorous

convergence analysis. However, with enough approximations, the convergence of the mean

weight vector to the optimal weight vector can be demonstrated, and bounds on the

adaptation constant can be derived. We assume that the interference is wide-sense

stationary and m is large enough that equation 40 gives

t̂(k) ≈ r = E[t̂(k)] = E[k n̂(i) k2] ≈ E[k n(i) k2] = tr(Rn) (B.21)

where tr( ) denotes the trace. We assume that after a number of algorithm iterations k0,

p̂x(k)/p̂n(k) ≈ ρ+ 1 ≈ ρ0 + 1. Using these assumptions in equation 22 and 23, the maximin

algorithm is approximated by

w(k + 1) = w(k) +
α

r

∙
cx(k)

(ρ0 + 1)
− cn(k)

¸
, k ≥ k0. (B.22)

Since w(k) does not depend on x(i) and bn(i) for i ≥ km+ 1, we make the approximation
that w(k) is statistically independent of x(i) and n(i) for i ≥ km+ 1. We obtain from
equations 33, 32, 16, and 12 that

E[cx(k)] = E[x(i)yr(i)] =
1

2
RxE[w(k)]. (B.23)

Similarly, equations 38, 37, 17, 7, and 3 yield

E[cn(k)] = E[n̂(i)ŷnr(i)] ≈
1

2
RnE[w(k)]. (B.24)

Taking the expected value of both sides of equation B-22, substituting equations B-23,

B-24, and 12 and simplifying algebraically, we obtain the approximate recursive equation

for the mean weight vector:

E[w(k + 1)] =

∙
I− α

2r(ρ0 + 1)
D

¸
E[w(k)], k ≥ k0 (B.25)

where

D = ρ0Rn −Rs = ρ0Rn − psis0sH0 . (B.26)

A straightforward calculation using equationsB-26 and B-20 yields

D R−1n s0 = 0 (B.27)

40



which indicates that w0 = R
−1
n s0 is an eigenvector of D, and the corresponding eigenvalue

is 0. Since D is Hermitian, it has a complete set of N orthogonal eigenvectors, one of which

is R−1n s0. Since ρ ≤ ρ0, equation B-1 implies that w
HRsw ≤ ρ0w

HRnw. Consequently,

wHD w ≥ 0, which proves that D is positive semidefinite and, hence, has N nonnegative

eigenvalues. Since only w = w0 gives ρ = ρ0, one of these eigenvalues is zero, and the other

N − 1 eigenvalues are positive.

We make the decomposition

E[w(k)] = η(k)R−1n s0 +
NX
i=2

ai(k)ei (B.28)

where each ai(k) and η(k) are scalar functions and ei is one of the N − 1 eigenvectors
orthogonal to R−1n s0. Substituting this equation into equation B-25 and using the

orthogonality of the eigenvectors, we obtain

η(k + 1) = η(k) = η(k0), k ≥ k0 (B.29)

ai(k + 1) =

∙
1− αλi

2r(ρ0 + 1)

¸
ai(k), 2 ≤ i ≤ N, k ≥ k0 (B.30)

where λi is the eigenvalue corresponding to ei. Assuming that η(k0) 6= 0, equations B-19,
B-29, and B-30 indicate that E[w(k)] −→ w0 as k →∞ if and only if each ai(k)→ 0. The

solution to equation B-30 is

ai(k) =

∙
1− αλi

2r(ρ0 + 1)

¸k−k0
ai(k0), 2 ≤ i ≤ N, k ≥ k0. (B.31)

This equation indicates that ai(k) −→ 0, 2 ≤ i ≤ N , as k →∞ if and only if¯̄̄̄
1− αλi

2r(ρ0 + 1)

¯̄̄̄
< 1 , 2 ≤ i ≤ N. (B.32)

This inequality implies that the necessary and sufficient condition for the convergence of

the mean weight vector is

0 < α <
4r(ρ0 + 1)

λmax
(B.33)

where λmax is the largest eigenvalue of D.

Since the sum of the eigenvalues of a square matrix is equal to its trace,

λmax ≤
NX
i=1

λi = tr(D) = ρ0r − tr(Rs) ≤ ρ0r. (B.34)
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Substituting this bound into equation B-33 and simplifying the result, we obtain

0 < α < 4 (B.35)

as a sufficient (but not necessary) condition for the convergence of the mean weight vector

to the optimal weight vector. Although this inequality must be regarded as an

approximation because of the approximations used in its derivation, it gives at least rough

guidance in the selection of the adaptation constant. The fact that the upper bound is

numerical and does not depend on environmental parameters provides support for the

choice of equation 23 as the adaptation sequence.
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C. Alternative Maximin Algorithm

The alternative maximin algorithm is derived in the same manner as the maximin

algorithm except that the circular symmetry of complex envelopes is not exploited. As

shown in the derivation of equation 15, the method of steepest descent yields

w(k + 1) = w(k) + μ0(k)[ρ(k) + 1]

∙
Rxw(k)

px(k)
− Rnw(k)

pn(k)

¸
. (C.1)

Let p̂x(k), p̂n(k), and bρ(k) denote estimates of px(k), pn(k), and ρ(k), respectively,
following weight iteration k. The adaptation sequence is defined as α(k) = μ0(k)[bρ(k) + 1].
Let cx(k) and cn(k) denote estimates following iteration k of the input correlation vector

E[x(i)y∗(i)] and the noise correlation vector E[n(i)y∗n(i)], respectively. If w(k) is modeled

as deterministic (nonrandom) between weight iterations, then Rxw(k) = E[x(i)y
∗(i)] and

Rnw(k) = E[n(i)y
∗
n(i)]. Substituting these estimates and relations into equation C-1, we

obtain the alternative maximin algorithm:

w(k + 1) = w(k) + α(k)

∙
cx(k)

p̂x(k)
− cn(k)
p̂n(k)

¸
, k ≥ 0 (C.2)

where w(0) is the deterministic initial weight vector. The adaptation sequence α(k) should

be chosen so that E[w(k)] converges to a nearly optimal steady-state value. It is also

intuitively plausible that α(k) should decrease rapidly as E[w(k)] converges. A suitable

candidate is

α(k) = α
p̂n(k)

t̂(k)
(C.3)

where t̂(k) is an estimate of the total interference and noise power entering the array, and

α is the adaptation constant.

The vectors applied to the adaptive filter are x(i) and n̂(i), and m samples are taken per

weight iteration. The adaptive filter produces the output

y(i) = wH(k)x(i), i = km+ 1, · · · , (k + 1)m (C.4)

where sample i is taken after weight iteration k. This output is applied to the demodulator

and is used in the estimators

cx(k) =
1

m

(k+1)mX
i=km+1

x(i)y∗(i), k ≥ 0 (C.5)
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and

p̂x(k) =
1

m

(k+1)mX
i=km+1

|y(i)|2 , k ≥ 0 (C.6)

which are unbiased when the desired signal and the interference are wide-sense stationary

processes.

The adaptive filter generates an estimate of yn(i) = w
H(k)n(i) given by

ŷn(i) = w
H(k)n̂(i), i = km+ 1, · · · , (k + 1)m. (C.7)

The critical requirement of n̂(i) is that it have the same second-order statistics as n(i), the

undesired component of x(i). If the spectrum of an interference signal overlaps the signal

and monitor channels, then the vector

ne(i) = n̂(i) exp(−j2πfoiTs) (C.8)

provides an estimate of the signal-filter output n(i). Treating the weight vector as a

constant and observing that E[n(i)nH(i)] ≈ E[ne(i)nHe (i)] = E[n̂(i)n̂H(i)], we obtain

E[n̂(i)ŷ∗n(i)] ≈ E[n(i)y∗n(i)]. (C.9)

Therefore, an estimator of the interference-plus-noise correlation at weight iteration k is

cn(k) =
1

m

(k+1)mX
i=km+1

n̂(i)ŷ∗n(i), k ≥ 0. (C.10)

Similarly, an estimator proportional to the interference-plus-noise output power is

p̂n(k) =
1

m

(k+1)mX
i=km+1

|ŷn(i)|2 , k ≥ 0. (C.11)

A recursive estimator of the total interference-plus-noise power entering the array is the

same as it is in the maximin algorithm:

t̂(k) =

(
μt̂(k − 1) + 1−μ

m

P(k+1)m
i=km+1 k n̂(i) k2, k ≥ 1

1
m

Pm
i=1 k n̂(i) k2, k = 0

(C.12)

where k v k denotes the Euclidean norm of v, μ is the memory factor, and 0 ≤ μ ≤ 1.
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The convergence analysis for the alternative algorithm is nearly the same as that for the

maximin algorithm, which is derived in appendix B. It is found that for the alternative

algorithm,

0 < α < 2 (C.13)

is a sufficient (but not necessary) condition for the convergence of the mean weight vector

to the optimal weight vector given by equation B-19.

Let u(k) denote the second term on the right-hand side of equation C-2. A straightforward

calculation using the preceding equations indicates that wH(k)u(k) = 0. Consequently,

k w(k + 1) k2=k w(k) + u(k) k2≥k w(k) k2, which implies that the norm of the weight

vector increases monotonically. Thus, the alternative algorithm requires some type of

weight normalization or regularization. Even without including this normalization, the

alternative algorithm requires almost twice as much computation as the maximin

algorithm. Simulation experiments indicate that the two algorithms provide nearly the

same overall performance. Therefore, the maximin algorithm is clearly preferable to the

alternative maximin algorithm.
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